A Physics-based Algorithm for Real-time Simulation of Electrosurgery Procedures in Minimally Invasive Surgery

Abstract: 

Background

High-frequency electricity is used in a majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue.

Methods

We present a real-time and physically realistic simulation of electrosurgery, by modeling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide sub-finite-element graphical rendering of vaporized tissue, a dual mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization.

Results

We have demonstrated our physics based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost.

Conclusions

Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization.

Reference:
Zhonghua Lu, Venkata S. Arikatla, Zhongqing Han, Brian F. Allen, Suvranu De (2014). A Physics-based Algorithm for Real-time Simulation of Electrosurgery Procedures in Minimally Invasive Surgery.

The International Journal of Medical Robotics and Computer Assisted Surgery, Volume 10, Issue 4, December 2014, Pages 495–504